Physic	cs 14-01 Einstein's Postulat	es and Time Dilat	ion	Nam	e:
Event					
•	Physical in a c	ertain	_ at a certain	_•	
Refere	nce Frame				
•	Coordinate(x,	y, z) and			
Inertia	Reference Frame				
•	Reference frame where	Law of	is		
•	No				
•	No				
Einste	in's Postulates				
The Re	lativity Postulate				
•	The laws of ar	e the	in inertial r	eference frame.	
The Sp	eed of Light Postulate				
•	The speed of light in a	, measured i	ninertial referen	ice frame,	has the
	value of c, no matter how fast				
Consec	uences of Relativity Postulate				
•	inertial refere	nce frame is as	as any other.		
•	You say any re	eference frame is	at		
•	There is no ve	locity or rest, only ve	elocity to the	e frame	
Explan	ation of Speed of Light Postulat	e			
•	The observer on the truck			c	
	speed of to be				9
	since he is the	light.		15 m/s	
•	Logic says the observer on the	e			
	measures the speed of	to be		<u> </u>	
	, but he doesn'	t.			
•	The observer on the	measures spe	ed of light to be	also.	
•	Verified by	many times.			
Simulta	aneous				
•	Just because two events	simultane	ous to obser	ver does not mean	
	observes see the	simultaneously			
Time I	Dilation				
•	Astronaut measures			D	
•	by aiming a at a	W GO			
	mirror. The light	← Beginning	$L \longrightarrow L$	L	Ending
	from the mirror and hits a	event		Δt	event
			Observer on earth	9	
•	The person on				
	says that the		80		
	time of the event must be	because sl	ne sees the laser beam go		
			Λt.		
		Δ	$t = \frac{2v_0}{\sqrt{1 + v^2}}$		
			$\sqrt{1-\frac{c^2}{c^2}}$		

• Where Δt_0 = proper time measured in a reference frame at rest relative to the event, Δt = dilated time measured in a reference frame moving relative to the event, v = relative speed between the observers, v = speed of light in a vacuum

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

1 Hybred 11 of Embeding 1 obtained and 1 mile Embeding	11011101
Let's say the USS Enterprise's 1/3 impulse speed is one-quarter the speed of light. If	f Spock, in the ship, says the planet will
blow up in 10 minutes, how long does the away team have to beam up?	

Picard is on Rigel 7 and needs to go to Earth 776.6 light-years away, but the Enterprise's warp drive is broken. If full impulse is ³/₄ the speed of light, how long will a Rigelian think it will take the Enterprise to get to Earth?

How long will the Enterprise's crew think it will take?

Physics 14-01 Finstein's Postulates and Time Dilation

Practice Work

- 1. Which of Einstein's postulates of special relativity includes a concept that does not fit with the ideas of classical physics? Explain.
- 2. Is Earth an inertial frame of reference? Is the Sun? Justify your response.
- 3. When you are flying in a commercial jet, it may appear to you that the airplane is stationary and the Earth is moving beneath you. Is this point of view valid? Discuss briefly.
- 4. Does motion affect the rate of a clock as measured by an observer moving with it? Does motion affect how an observer moving relative to a clock measures its rate?
- 5. To whom does the elapsed time for a process seem to be longer, an observer moving relative to the process or an observer moving with the process? Which observer measures proper time?
- 6. (a) What is γ if v = 0.100c? (b) If v = 0.900c? (OpenStax 28.2) **1.00504, 2.29**
- 7. Particles called π -mesons are produced by accelerator beams. If these particles travel at 2.70×10^8 m/s and live 2.60×10^{-8} s when at rest relative to an observer, how long do they live as viewed in the laboratory? (OpenStax 28.3) 5.96×10^{-8} s
- 8. Suppose a particle called a kaon is created by cosmic radiation striking the atmosphere. It moves by you at 0.980c, and it lives 1.24×10^{-8} s when at rest relative to an observer. How long does it live as you observe it? (OpenStax 28.4) 6.23×10^{-8} s
- 9. A neutral π -meson is a particle that can be created by accelerator beams. If one such particle lives 1.40×10^{-16} s as measured in the laboratory, and 0.840×10^{-16} s when at rest relative to an observer, what is its velocity relative to the laboratory? (OpenStax 28.5) 0.800c
- 10. If relativistic effects are to be less than 1%, then γ must be less than 1.01. At what relative velocity is γ = 1.01? (OpenStax 28.7) **0.140c**
- 11. (a) At what relative velocity is $\gamma = 1.50$? (b) At what relative velocity is $\gamma = 100$? (OpenStax 28.9) **0.745c, 0.99995c**

Name: